skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eastgate, Martin_D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A flurry of recent research has centered on harnessing the power of nickel catalysis in organic synthesis. These efforts have been bolstered by contemporaneous development of well‐defined nickel (pre)catalysts with diverse structure and reactivity. In this report, we present ten different bench‐stable, 18‐electron, formally zero‐valent nickel–olefin complexes that are competent pre‐catalysts in various reactions. Our investigation includes preparations of novel, bench‐stable Ni(COD)(L) complexes (COD=1,5‐cyclooctadiene), in which L=quinone, cyclopentadienone, thiophene‐S‐oxide, and fulvene. Characterization by NMR, IR, single‐crystal X‐ray diffraction, cyclic voltammetry, thermogravimetric analysis, and natural bond orbital analysis sheds light on the structure, bonding, and properties of these complexes. Applications in an assortment of nickel‐catalyzed reactions underscore the complementary nature of the different pre‐catalysts within this toolkit. 
    more » « less
  2. Abstract We report that Ni(COD)(DQ) (COD=1,5‐cyclooctadiene, DQ=duroquinone), an air‐stable 18‐electron complex originally described by Schrauzer in 1962, is a competent precatalyst for a variety of nickel‐catalyzed synthetic methods from the literature. Due to its apparent stability, use of Ni(COD)(DQ) as a precatalyst allows reactions to be conveniently performed without use of an inert‐atmosphere glovebox, as demonstrated across several case studies. 
    more » « less